Nuclear EMC effect

Ian Cloët (University of Washington)

Collaborators

Wolfgang Bentz (Tokai University) Anthony Thomas (Adelaide University)

3rd International Workshop on Nucleon Structure at Large Bjorken *x* JLab, October 2010

EMC Effect

J. J. Aubert *et al.* [European Muon Collaboration], Phys. Lett. B **123**, 275 (1983).

- Fundamentally challenged our understanding of nuclei
- Immediate parton model interpretation:
 - valence quarks in nucleus carry less momentum than in nucleon
- What is the mechanism? After more than 25 years no consensus
- nuclear structure, pions, 6 quark bags, rescaling, medium modification

EMC Effect

- Understanding EMC effect critical for QCD based description of nuclei
- Need new experiments accessing different aspects of the EMC effect
- Important near term measurements
 - flavour decomposition & spin dependence of nuclear PDFs
- New experiments
 - SIDIS, parity violating DIS, polarized DIS, *ν*DIS, Drell-Yan

Anti-quarks in Nuclei and Drell-Yan

- Pions play a fundamental role in traditional nuclear physics
 - therefore expect pion (anti-quark) enhancement in nuclei
- Drell-Yan experiment set up to probe anti-quarks in target nucleus

• $\bar{q}q \rightarrow \mu^+\mu^- -$ E906: run ~2011 FNAL, E772: Alde *et al.*, PRL. **64**, 2479 (1990).

- no pionic enhancement very unexpected energy loss?
- Important to understand anti-quarks in nuclei: Drell-Yan & PV DIS

Nambu–Jona-Lasinio Model and PDFs

• NJL model interpreted as low energy chiral effective theory of QCD

Quark distributions given by Feynman diagram calculation

Constituent Quark PDFs

• Gottfried Sum Rule: NMC 1994: $S_G = 0.258 \pm 0.017 [Q^2 = 4 \,\text{GeV}^2]$

$$S_G = \int_0^1 \frac{dx}{x} \left[F_{2p}(x) - F_{2n}(x) \right] = \frac{1}{3} - \frac{2}{3} \int_0^1 dx \left[\bar{d}(x) - \bar{u}(x) \right]$$

• We find: $S_G = \frac{1}{3} - \frac{4}{9} (1 - Z_q) = 0.252$ $[Z_q = 0.817]$

Asymmetric Nuclear Matter

Finite density Lagrangian: $\bar{q}q$ interaction in σ , ω , ρ channels

$$\mathcal{L} = \overline{\psi}_q \left(i \, \partial \!\!\!/ - M^* - \not\!\!\!/ \psi_q \right) \psi_q + \mathcal{L}'_I$$

• Fundamental physics: mean fields couple to the quarks in nucleons

$$S(k)^{-1} = k - M - i\varepsilon \quad \rightarrow \quad S_q(k)^{-1} = k - M^* - V_q - i\varepsilon$$

• Hadronization + mean-field \implies effective potential that provides

 $V_{u(d)} = \omega_0 \pm \rho_0, \qquad \omega_0 = 6 G_{\omega} (\rho_p + \rho_n), \qquad \rho_0 = 2 G_{\rho} (\rho_p - \rho_n)$

• $G_{\omega} \Leftrightarrow Z = N$ saturation & $G_{\rho} \Leftrightarrow$ symmetry energy

Model Independent Results?

- The effect of vector-field is model independent under assumptions
 - quarks feel nuclear medium
 - struck quark does not feel vector-field (asymptotic freedom)
- Result [Thomas 1998, Bentz 2003, Miller 2005]

$$q(x) = \frac{p^+}{p^+ - V^+} q_0 \left(\frac{p^+}{p^+ - V^+} x - \frac{V_q^+}{p^+ - V^+}\right)$$

- All medium modification models should obey this result
- Important observation
 - For N > Z ρ^0 -field $\implies V_d > V_u$
 - ρ^0 -field shifts momentum from u- to d-quarks
- As we will see this result has important testable consequences
 - large flavour dependence of EMC effect for N > Z nuclei

Isovector EMC effect

• EMC ratio: $R = \frac{F_{2A}}{F_{2A,\text{naive}}} = \frac{F_{2A}}{Z F_{2p} + N F_{2n}} \simeq \frac{4 u_A(x) + d_A(x)}{4 u_f(x) + d_f(x)}$

- Density is fixed only changing Z/N ratio
- EMC effect essentially a consequence of binding at the quark level
- proton excess: *u*-quarks feel more repulsion than *d*-quarks ($V_u > V_d$)
- neutron excess: d-quarks feel more repulsion than u-quarks $(V_d > V_u)$

Weak mixing angle and the NuTeV anomaly

- NuTeV: $\sin^2 \theta_W = 0.2277 \pm 0.0013 (\text{stat}) \pm 0.0009 (\text{syst})$
 - G. P. Zeller et al. Phys. Rev. Lett. 88, 091802 (2002)
- World average $\sin^2 \theta_W = 0.2227 \pm 0.0004$: 3 $\sigma \implies$ "NuTeV anomaly"
- Huge amount of experimental & theoretical interest [over 400 citations]
- No universally accepted <u>complete</u> explanation

Paschos-Wolfenstein ratio motivated the NuTeV study:

$$R_{PW} = \frac{\sigma_{NC}^{\nu A} - \sigma_{NC}^{\bar{\nu} A}}{\sigma_{CC}^{\nu A} - \sigma_{CC}^{\bar{\nu} A}}, \qquad NC \Longrightarrow Z^0, \quad CC \Longrightarrow W^{\pm}$$

• For an isoscalar target $u_A \simeq d_A$ and if $s_A \ll u_A + d_A$

$$R_{PW} = \left(\frac{1}{2} - \sin^2 \theta_W\right) + \left(1 - \frac{7}{3}\sin^2 \theta_W\right) \frac{\langle x \, u_A^- - x \, d_A^- \rangle}{\langle x \, u_A^- + x \, d_A^- \rangle}$$

- NuTeV "measured" R_{PW} on an Fe target ($Z/N \simeq 26/30$)
- Correct for neutron excess ⇔ flavour dependent EMC effect
- Use our medium modified "Fe" quark distributions

$$\Delta R_{PW} = \Delta R_{PW}^{\text{naive}} + \Delta R_{PW}^{\text{Fermi}} + \Delta R_{PW}^{\rho^0}$$

= - (0.0107 + 0.0004 + 0.0028)

• Isoscalarity ρ^0 correction can explain up to 65% of anomaly

NuTeV anomaly cont'd

- Also correction from $m_u \neq m_d$ Charge Symmetry Violation
 - $CSV + \rho_0 \implies$ no NuTeV anomaly
 - No evidence for physics beyond the Standard Model
- Instead "NuTeV anomaly" is evidence for medium modification
 - Equally interesting
 - EMC effect has over 850 citations [J. J. Aubert *et al.*, Phys. Lett. B 123, 275 (1983).]
- Model dependence?
 - sign of correction is fixed by nature of vector fields

$$q(x) = \frac{p^+}{p^+ - V^+} q_0 \left(\frac{p^+}{p^+ - V^+} x - \frac{V_q^+}{p^+ - V^+} \right), \qquad N > Z \implies V_d > V_u$$

- ho^0 -field shifts momentum from u- to d-quarks
- size of correction is constrained by Nucl. Matt. symmetry energy
- ρ_0 vector field reduces NuTeV anomaly Model Independent!!

Total NuTeV correction

- Includes NuTeV functionals
- Small increase in systematic error
- NuTeV anomaly interpreted as evidence for medium modification
- Equally profound as evidence for physics beyond Standard Model

Consistent with other observables?

- We claim isovector EMC effect explains \sim 1.5 σ of NuTeV result
 - is this mechanism observed elsewhere?
- Yes!! Parity violating DIS: γZ^0 interference

$$A_{PV} = \frac{d\sigma_R - d\sigma_L}{d\sigma_R + d\sigma_L} \propto \left[a_2(x) + \frac{1 - (1 - y)^2}{1 + (1 - y)^2} a_3(x) \right]$$
$$a_2(x) = -2g_A^e \frac{F_2^{\gamma Z}}{F_2^{\gamma}} = \frac{6u^+ + 3d^+}{4u^+ + d^+} - 4\sin^2\theta_W$$
$$a_3(x) = -2g_V^e \frac{F_3^{\gamma Z}}{F_2^{\gamma}} = 3\left(1 - 4\sin^2\theta_W\right) \frac{2u^- + d^-}{4u^+ + d^+}$$

Parton model expressions

$$F_2^{\gamma Z} = 2 \sum e_q g_V^q x (q + \bar{q}), \qquad g_V^q = \pm \frac{1}{2} - 2e_q \sin^2 \theta_W$$

$$F_3^{\gamma Z} = 2 \sum e_q g_A^q (q - \bar{q}), \qquad g_A^q = \pm \frac{1}{2}$$

Parity Violating DIS: Iron & Lead

For a $N \simeq Z$ target:

$$a_2(x) = \frac{9}{5} - 4\sin^2\theta_W - \frac{12}{25} \frac{u_A^+(x) - d_A^+(x)}{u_A^+(x) + d_A^+(x)}$$

- "Naive" result has no medium corrections
- After naive isoscalarity corrections medium effects still very large
- Large x dependence of $a_2(x) \rightarrow$ evidence for medium modification

PVDIS: Carbon (with anti-quarks) Preliminary

Ignoring quark mass differences, s-quarks and EW corrections

• For a N = Z target:

$$a_{2}(x) = \frac{6u_{A}^{+} + 3d_{A}^{+}}{4u_{A}^{+} + d_{A}^{+}} - 4\sin^{2}\theta_{W} \rightarrow \frac{9}{5} - 4\sin^{2}\theta_{W}$$
$$a_{3}(x) = 3\left(1 - 4\sin^{2}\theta_{W}\right)\frac{2u^{-} + d^{-}}{4u_{A}^{+} + d_{A}^{+}} \rightarrow \frac{9}{5}\left(1 - 4\sin^{2}\theta_{W}\right)\frac{u_{A}^{-} + d_{A}^{-}}{u_{A}^{+} + d_{A}^{+}}$$

Measurement of $a_2(x)$ at each $x \implies$ a NuTeV experiment!

PVDIS: Carbon (with anti-quarks) Preliminary

Ignoring quark mass differences, s-quarks and EW corrections

• For a N = Z target:

$$a_{3}(x) \rightarrow \frac{9}{5} \left(1 - 4\sin^{2}\theta_{W} \right) \frac{u_{A}^{-} + d_{A}^{-}}{u_{A}^{+} + d_{A}^{+}} = \frac{9}{5} \left(1 - 4\sin^{2}\theta_{W} \right) \left[1 + 2\frac{\bar{u}_{A} + \bar{d}_{A}}{u_{A}^{-} + d_{A}^{-}} \right]^{-1}$$
$$\bar{q}(x) = \frac{p^{+}}{p^{+} - V^{+}} \ \bar{q}_{0} \left(\frac{p^{+}}{p^{+} - V^{+}} x + \frac{V_{q}^{+}}{p^{+} - V^{+}} \right)$$

• Measurement of $a_2(x)$ at each $x \implies$ a NuTeV experiment!

Flavour Dependence of EMC effect

• Flavour dependence determined by measuring F_{2A}^{γ} and $F_{2A}^{\gamma Z}$

• $N > Z \implies d$ -quarks feel more repulsion than u-quarks: $V_d > V_u$

$$q(x) = \frac{p^+}{p^+ - V^+} q_0 \left(\frac{p^+}{p^+ - V^+} x - \frac{V_q^+}{p^+ - V^+}\right)$$

- ho^0 field has shifted momentum from u to d quarks
- \blacktriangleright u quarks are more bound than d quarks
- If observed \implies very strong evidence for medium modification

EMC ratio

$$R = \frac{F_{2A}}{F_{2A}^{\text{naive}}} = \frac{F_{2A}}{Z F_{2p} + N F_{2n}}$$

Polarized EMC ratio

$$R_s^H = \frac{g_{1A}^H}{g_{1A}^{H,\text{naive}}} = \frac{g_{1A}^H}{P_p^H \, g_{1p} + P_n^H \, g_{1n}}$$

- Spin-dependent cross-section is suppressed by 1/A
 - Must choose nuclei with $A \lesssim 27$
 - protons should carry most of the spin e.g. \implies ⁷Li, ¹¹B, ...
- Ideal nucleus is probably ⁷Li
 - From Quantum Monte–Carlo: $P_p^J = 0.86$ & $P_n^J = 0.04$
- Ratios equal 1 in non-relativistic and no-medium modification limit

EMC ratio ⁷Li, ¹¹B and ²⁷Al

Is there medium modification

Is there medium modification

- Medium modification of nucleon has been switched off
- Relativistic effects remain
- Large splitting very difficult without medium modification

Nuclear Spin Sum

Proton spin states	Δu	Δd	\sum	g_A
p	0.97	-0.30	0.67	1.267
⁷ Li	0.91	-0.29	0.62	1.19
^{11}B	0.88	-0.28	0.60	1.16
15 N	0.87	-0.28	0.59	1.15
27 Al	0.87	-0.28	0.59	1.15
Nuclear Matter	0.79	-0.26	0.53	1.05

- Angular momentum of nucleon: $J = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + L_q + J_g$
 - in medium $M^* < M$ and therefore quarks are more relativistic
 - Iower components of quark wavefunctions are enhanced
 - quark lower components usually have larger angular momentum
 - $\Delta q(x)$ very sensitive to lower components
- Conclusion: quark spin → orbital angular momentum in-medium

Conclusion

- Illustrated the inclusion of quarks into a traditional description of nuclei
 - complementary approach to traditional nuclear physics
- Major discrepancy with SM predictions for Z^0 is NuTeV anomaly
 - may be resolved by CSV and isovector EMC effect corrections
- EMC effect and NuTeV anomaly are interpreted as evidence for medium modification of the bound nucleon wavefunction
 - result can be tested using PV DIS
- Some important remaining challenges:
 - ♦ polarized EMC effect [quark spin converted → L_q in nuclei]
 - flavour dependence of EMC effect
- Exciting new experiments:
 - PV DIS, pion induced Drell-Yan, neutron knockout
- Slowly building a QCD based understanding of nuclear structure