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Before EMC experiment

Experiment (Gomez 1994)

● J. J. Aubert et al. [European Muon Collaboration], Phys. Lett. B 123, 275 (1983).

● Fundamentally challenged our understanding of nuclei

● Immediate parton model interpretation:

✦ valence quarks in nucleus carry less momentum than in nucleon

● What is the mechanism? After more than 25 years no consensus

● nuclear structure, pions, 6 quark bags, rescaling, medium modification
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● Understanding EMC effect critical for QCD based description of nuclei

● Need new experiments accessing different aspects of the EMC effect

● Important near term measurements

✦ flavour decomposition & spin dependence of nuclear PDFs

● New experiments

✦ SIDIS, parity violating DIS, polarized DIS, νDIS, Drell-Yan
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● Pions play a fundamental role in traditional nuclear physics

✦ therefore expect pion (anti-quark) enhancement in nuclei

● Drell-Yan experiment set up to probe anti-quarks in target nucleus

✦ q̄q → µ+µ− – E906: run ∼2011 FNAL, E772: Alde et al., PRL. 64, 2479 (1990).

✦ no pionic enhancement – very unexpected – energy loss?

● Important to understand anti-quarks in nuclei: Drell-Yan & PV DIS



Nambu–Jona-Lasinio Model and PDFs
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● NJL model interpreted as low energy chiral effective theory of QCD

Z(k2)
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Þ G Θ(k2−Λ2)

● Quark distributions given by Feynman diagram calculation
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Constituent Quark PDFs
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● Dress quarks with pions
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● Gottfried Sum Rule: NMC 1994: SG = 0.258 ± 0.017 [Q2 = 4 GeV2]

SG =

∫ 1

0

dx

x
[F2p(x) − F2n(x)] =

1

3
−

2

3

∫ 1

0
dx
[

d̄(x) − ū(x)
]

● We find: SG = 1
3 − 4

9 (1 − Zq) = 0.252 [Zq = 0.817]



Asymmetric Nuclear Matter
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● Finite density Lagrangian: q̄q interaction in σ, ω, ρ channels

L = ψq (i 6∂ −M∗− 6Vq)ψq + L′
I

● Fundamental physics: mean fields couple to the quarks in nucleons

● Finite density quark propagator

S(k)−1 = /k −M − iε ➞ Sq(k)
−1 = /k −M∗ − /Vq − iε

● Hadronization + mean–field =⇒ effective potential that provides

Vu(d) = ω0 ± ρ0, ω0 = 6Gω (ρp + ρn) , ρ0 = 2Gρ (ρp − ρn)

✦ Gω ⇔ Z = N saturation & Gρ ⇔ symmetry energy



Model Independent Results?
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● The effect of vector-field is model independent under assumptions

✦ quarks feel nuclear medium

✦ struck quark does not feel vector-field (asymptotic freedom)

● Result [Thomas 1998, Bentz 2003, Miller 2005]

q(x) =
p+

p+ − V +
q0

(

p+

p+ − V +
x−

V +
q

p+ − V +

)

● All medium modification models should obey this result

● Important observation

✦ For N > Z ρ0-field =⇒ Vd > Vu

✦ ρ0-field shifts momentum from u- to d-quarks

● As we will see this result has important testable consequences

✦ large flavour dependence of EMC effect for N > Z nuclei



Isovector EMC effect
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● EMC ratio: R =
F2A

F2A,naive
=

F2A

Z F2p +N F2n
≃

4 uA(x) + dA(x)

4 uf (x) + df (x)

● Density is fixed only changing Z/N ratio

● EMC effect essentially a consequence of binding at the quark level

● proton excess: u-quarks feel more repulsion than d-quarks (Vu > Vd)

● neutron excess: d-quarks feel more repulsion than u-quarks (Vd > Vu)



Weak mixing angle and the NuTeV anomaly
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● NuTeV: sin2 θW = 0.2277 ± 0.0013(stat) ± 0.0009(syst)

✦ G. P. Zeller et al. Phys. Rev. Lett. 88, 091802 (2002)

● World average sin2 θW = 0.2227 ± 0.0004 : 3 σ =⇒ “NuTeV anomaly”

● Huge amount of experimental & theoretical interest [over 400 citations]

● No universally accepted complete explanation



Paschos-Wolfenstein ratio

11 /24

● Paschos-Wolfenstein ratio motivated the NuTeV study:

RPW =
σν A

NC − σν̄ A
NC

σν A
CC − σν̄ A

CC

, NC =⇒ Z0, CC =⇒W±

● For an isoscalar target uA ≃ dA and if sA ≪ uA + dA

RPW =

(

1

2
− sin2 θW

)

+

(

1 −
7

3
sin2 θW

)

〈xu−A − x d−A〉

〈xu−A + x d−A〉

● NuTeV “measured” RPW on an Fe target (Z/N ≃ 26/30)

● Correct for neutron excess ⇔ flavour dependent EMC effect

● Use our medium modified “Fe” quark distributions

∆RPW = ∆Rnaive
PW + ∆RFermi

PW + ∆R
ρ0

PW

= − (0.0107 + 0.0004 + 0.0028) .

● Isoscalarity ρ0 correction can explain up to 65% of anomaly



NuTeV anomaly cont’d
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● Also correction from mu 6= md - Charge Symmetry Violation

✦ CSV+ρ0 =⇒ no NuTeV anomaly

✦ No evidence for physics beyond the Standard Model

● Instead “NuTeV anomaly” is evidence for medium modification

✦ Equally interesting

✦ EMC effect has over 850 citations [J. J. Aubert et al., Phys. Lett. B 123, 275 (1983).]

● Model dependence?
✦ sign of correction is fixed by nature of vector fields

q(x) = p+

p+−V + q0

(

p+

p+−V + x−
V +

q

p+−V +

)

, N > Z =⇒ Vd > Vu

✦ ρ0-field shifts momentum from u- to d-quarks

✦ size of correction is constrained by Nucl. Matt. symmetry energy

● ρ0 vector field reduces NuTeV anomaly – Model Independent!!



Total NuTeV correction

13 /24

APV(Cs)

SLAC E158

NuTeV

Z-pole

CDF

D0

Møller [JLab]

Qweak [JLab]

PV-DIS [JLab]

0.225

0.230

0.235

0.240

0.245

0.250

si
n

2
θ

M
S

W

0.001 0.01 0.1 1 10 100 1000 10000

Q (GeV)

Standard Model
Completed Experiments
Future Experiments

● Includes NuTeV functionals

● Small increase in systematic error

● NuTeV anomaly interpreted as evidence for medium modification

● Equally profound as evidence for physics beyond Standard Model



Consistent with other observables?
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● We claim isovector EMC effect explains ∼1.5σ of NuTeV result

✦ is this mechanism observed elsewhere?

● Yes!! Parity violating DIS: γ Z0 interference

APV =
dσR − dσL

dσR + dσL
∝

[

a2(x) +
1 − (1 − y)2

1 + (1 − y)2
a3(x)

]

a2(x) = −2ge
A

F γZ
2

F γ
2

=
6u+ + 3d+

4u+ + d+
− 4 sin2 θW

a3(x) = −2ge
V

F γZ
3

F γ
2

= 3
(

1 − 4 sin2 θW

) 2u− + d−

4u+ + d+

● Parton model expressions

F γZ
2 = 2

∑

eq g
q
V x (q + q̄) , gq

V = ±1
2 − 2eq sin2 θW

F γZ
3 = 2

∑

eq g
q
A (q − q̄) , gq

A = ±1
2



Parity Violating DIS: Iron & Lead
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● For a N ≃ Z target:

a2(x) =
9

5
− 4 sin2 θW −

12

25

u+
A(x) − d+

A(x)

u+
A(x) + d+

A(x)

● “Naive” result has no medium corrections

● After naive isoscalarity corrections medium effects still very large

● Large x dependence of a2(x) ➞ evidence for medium modification



PVDIS: Carbon (with anti-quarks) Preliminary
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Q2 = 5 GeV2
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● Ignoring quark mass differences, s-quarks and EW corrections

✦ For a N = Z target:

a2(x) =
6u+

A + 3d+
A

4u+
A + d+

A

− 4 sin2 θW →
9

5
− 4 sin2 θW

a3(x) = 3
(

1 − 4 sin2 θW

) 2u− + d−

4u+
A + d+

A

→
9

5

(

1 − 4 sin2 θW

) u−A + d−A
u+

A + d+
A

● Measurement of a2(x) at each x =⇒ a NuTeV experiment!
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● Ignoring quark mass differences, s-quarks and EW corrections

✦ For a N = Z target:

a3(x) →
9

5

(

1 − 4 sin2 θW

) u−A + d−A
u+

A + d+
A

=
9

5

(

1 − 4 sin2 θW

)

[

1 + 2
ūA + d̄A

u−A + d−A

]−1

q̄(x) =
p+

p+ − V +
q̄0

(

p+

p+ − V +
x+

V +
q

p+ − V +

)

● Measurement of a2(x) at each x =⇒ a NuTeV experiment!



Flavour Dependence of EMC effect
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● Flavour dependence determined by measuring F γ
2A and F γZ

2A

● N > Z =⇒ d-quarks feel more repulsion than u-quarks: Vd > Vu

q(x) = p+

p+−V + q0

(

p+

p+−V + x−
V +

q

p+−V +

)

✦ ρ0 field has shifted momentum from u to d quarks

✦ u quarks are more bound than d quarks

● If observed =⇒ very strong evidence for medium modification



Finite nuclei EMC effects
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● EMC ratio

R =
F2A

F naive
2A

=
F2A

Z F2p +N F2n

● Polarized EMC ratio

RH
s =

gH
1A

gH,naive
1A

=
gH
1A

PH
p g1p + PH

n g1n

● Spin-dependent cross-section is suppressed by 1/A

✦ Must choose nuclei with A . 27

✦ protons should carry most of the spin e.g. =⇒ 7Li, 11B, . . .

● Ideal nucleus is probably 7Li

✦ From Quantum Monte–Carlo: P J
p = 0.86 & P J

n = 0.04

● Ratios equal 1 in non-relativistic and no-medium modification limit



EMC ratio 7Li, 11B and 27Al
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Is there medium modification

21 /24

27
Al

Q2
= 5 GeV

2

0.6

0.7

0.8

0.9

1

1.1

1.2

E
M

C
R

a
t
io

s
E

M
C

R
a
t
io

s

0 0.2 0.4 0.6 0.8 1

xx

Experiment: 27Al

Unpolarized EMC effect

Polarized EMC effect



Is there medium modification
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● Medium modification of nucleon has been switched off

● Relativistic effects remain

● Large splitting very difficult without medium modification



Nuclear Spin Sum
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Proton spin states ∆u ∆d Σ gA

p 0.97 -0.30 0.67 1.267
7Li 0.91 -0.29 0.62 1.19
11B 0.88 -0.28 0.60 1.16
15N 0.87 -0.28 0.59 1.15
27Al 0.87 -0.28 0.59 1.15

Nuclear Matter 0.79 -0.26 0.53 1.05

● Angular momentum of nucleon: J = 1
2 = 1

2 ∆Σ + Lq + Jg

✦ in medium M∗ < M and therefore quarks are more relativistic

✦ lower components of quark wavefunctions are enhanced

✦ quark lower components usually have larger angular momentum

✦ ∆q(x) very sensitive to lower components

● Conclusion: quark spin ➞ orbital angular momentum in-medium



Conclusion
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● Illustrated the inclusion of quarks into a traditional description of nuclei

✦ complementary approach to traditional nuclear physics

● Major discrepancy with SM predictions for Z0 is NuTeV anomaly

✦ may be resolved by CSV and isovector EMC effect corrections

● EMC effect and NuTeV anomaly are interpreted as evidence for
medium modification of the bound nucleon wavefunction

✦ result can be tested using PV DIS

● Some important remaining challenges:

✦ polarized EMC effect [quark spin converted ➞ Lq in nuclei]

✦ flavour dependence of EMC effect

● Exciting new experiments:

✦ PV DIS, pion induced Drell-Yan, neutron knockout

● Slowly building a QCD based understanding of nuclear structure
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